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The parallel software stack has ossified
..but

Good position to rethink the parallel HW/SW stack
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Why Change?
Limitations of the Parallel HW/SW Stack

Address space

All
mappings

But OS, compiler, and HW all make assumptions about
address spaces and translation!

[z (hit) - - DesSIZN baKked TNto HVV
VAddr EE | - Workloads changing
PAddr l : - SASOS increasingly common
r Pagewalker E - Power consumption
I
B l : N y
| '

DRAM page tables
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Why Change?
Limitations of the Parallel HW/SW Stack

But OS, compiler, and HW all make assumptions about

coherence!

- False sharing
- No SW control (hidden from OS,

\_ language) )
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Many assumptions span the stack...

* Timing

Interweaving: reconsider these at all layers

* Scheduling (polling, lack of real-time, etc.)

Kyle C. Hale 5
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Static

Kernel Framework
(C+asm)

Nautilus kernel &

https://github.com/hexsa-lab/nautilus



OpenMP codes

NAS, BOTS, etc.
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CLANG/LLVM

Blending

Compile with kernel mode assumption



Compiler produces “kernelized” code

Enhanced Hybrid Runtime Produced by Toolchain

Special Features Hardware Platform

(x64 NUMA, Phi,
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Nautilus Kernel
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Interweaving Example:
CARAT: Compiler and Runtime-based Address Translation

* Address translation (via paging) is universal, yet showing its age
* TLB misses are a significant performance inhibitor, including in HPC
* TLBs/paging limits cache design
* Fundamentally a hardware/kernel co-design

e Can we do better than paging?
* CARAT uses physical addresses instead (no paging, no TLB)

* Protection and memory migration achieved via compiler/kernel co-design

* Proof-of-concept shows feasibility
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Traditional Address Translation

Arbitrary Code (C, C++, ...)
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CARAT: Compiler and Runtime-based Address Translation
[PLDI “20]
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CARAT: Compiler and Runtime-based Address Translation
[In Submission Work]

* CARAT integrated into Nautilus Kernel

* Linux-compatible process abstraction...

e ...but executable runs as a component of the kernel

e ... yet with protection and memory migration available
* All while using physical addressing
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nterweaving Example:
Compiler-based Timing (CT)

* Timing is traditionally driven by hardware timer interrupts
* Interrupt latency is high and not getting lower

* Limits granularity of many parallel constructs
e E.g. preemptive threads

* Can we replace hardware timers with callbacks introduced by the
compiler throughout the kernel and application codebase?
* Yes. And achieve similar precision. With 6x lower overhead.
* Enabling preemptive threads with 4x smaller granularity
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Traditional Timing
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Compiler-based Timing [SC ‘20]

Arbitrary Code (C, C++, ...) + Kernel
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* More need for single-function execution contexts...even in HPC
* But virtualization platforms not really designed for this
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OpenMP [2 2| is arguably the most widely-employed approach
for the ligguis pression and realization of shared memory
p ara \28} cause it extends existing sequential languages
]l L yffran with parallel features. As a consequence,
it can be incrementally adopted. While OpenMP's origins are in
compact expression of loop-level data parallelism on SMPs, it has
grown to include support for heterogeneous parallelism (including
memory and devices), and task parallelism (including fine-grained
and recursive tasks).
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What’s Next

* Selective Coherence

* Blended Device Drivers

* Pipeline Interrupts

* Bespoke Execution Contexts
* More emphasis on HLLs
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What’s Next

e Selective coherence

Normalized Performance Speedup

Using high-level program information to
inform coherence protocol:

- ~46% speedup

- ~53% interconnect energy reduction

Kyle C. Hale 23




&n
&

Northwestern
University

What’s Next

* Blending \ _____________
app code

Swap

<
«

Local machine Fetch Server

= '!/'
EO GY

Interrupt-free
Systems

lightweight us kernel
level polling code

e.g. Shenango,
DPDK

Blended device drivers
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Students and Collaborators

* Many students have or are contributing to these efforts
* Complete list: http://interweaving.org
* You should hire them!

* Work presented here:

* Brian Suchy, Mike Wilkins, Souradip Ghosh, Brian Homerding, Jiacheng Ma, Wenyi Ma,
Michael Cuevas, Zhen Huang, Conghao Liu, Brian Tauro, Nick Wanninger, Josh Bowden, Enrico
Deiana, Vijay Kandihah, Drew Kersnar, Alex Bernat, Gaurav Chaudhary, Siyuan Chai, Kevin
McAfee, Kevin Mendoza Tudares

Heartbeat is in collaboration with Umut Acar, Mike Rainey, and Ryan Newton at
CMU; Selective coherence is in collaboration with Umut Acar and Sam Westrick
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Check out our OpenMP paper @ SC!

Wednesday, 4PM (227-228)

Thanks!

The Interweaving Project
http://interweaving.org
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